Salt-assisted combustion synthesis of cobalt ferrite nanoparticles; magnetic properties and cation distribution measurement by XRD analysis
Authors
Abstract:
Current study represents the effect of the size and synthesis method on the cation distribution of cobalt ferrite nanoparticles and on the magnetic properties. The nanoferrites have been synthesized through sol-gel auto-combustion method using metal nitrates as precursor and citrate as fuel. In order to obtain the fine and agglomerated-free particles, we have used salt-assisted combustion reaction method. Magnetic properties of the synthesized single phase cobalt ferrite nanoparticles are carried out using vibrating sample magnetometer (VSM) at room temperature. It has been observed that the coercivity and saturation magnetization of the samples reduced by adding salt. The transmission electron microscopy (TEM) confirms the finer nanoparticles formation from around 70-200 nm to 10-40 nm. Structural characterization is done by X-ray diffraction (XRD) and it confirms the spinel structure formation for the samples. The crystallite size and induced strain were derived from the XRD patterns by Williamson-Hall (W-H) method. The magnetic parameters were reduced by crystallite size reduction from 38.5 nm to 11 nm. The further analysis of XRD peaks is fulfilled using Rietveld refinement in order to explain the magnetic properties. The obtained Rietveld refined data allow us to measure the distribution of cations within the available octahedral and tetrahedral sites.
similar resources
An investigation on synthesis and magnetic properties of nanoparticles of Cobalt Ferrite coated with SiO2
SiO2-coated Cobalt Ferrite (CoFe2O4) nanoparticles were obtained by the hydrolysis of tetraethylorthosilicate in the presence of CoFe2O4 nanoparticles in co-precipitation. The effects of SiO2coating on the magnetic properties of CoFe2O4 nanoparticles were investigated. The structural, morphological and magne...
full textAn investigation on synthesis and magnetic properties of nanoparticles of Cobalt Ferrite coated with SiO2
SiO2-coated Cobalt Ferrite (CoFe2O4) nanoparticles were obtained by the hydrolysis of tetraethylorthosilicate in the presence of CoFe2O4 nanoparticles in co-precipitation. The effects of SiO2coating on the magnetic properties of CoFe2O4 nanoparticles were investigated. The structural, morphological and magne...
full textan investigation on synthesis and magnetic properties of nanoparticles of cobalt ferrite coated with sio2
sio2-coated cobalt ferrite (cofe2o4) nanoparticles were obtained by the hydrolysis of tetraethylorthosilicate in the presence of cofe2o4 nanoparticles in co-precipitation. the effects of sio2coating on the magnetic properties of cofe2o4 nanoparticles were investigated. the structural, morphological and magnetic properties of as-prepared sample were characterization by x-ray diffraction (xrd), f...
full textcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولCobalt ferrite nanorings: Ostwald ripening dictated synthesis and magnetic properties.
CoFe(2)O(4) nanorings were synthesized by a simple solvothermal process, in which Ostwald ripening was definitely responsible for the formation of hollow structures, and their ferromagnetic behavior at room temperature was observed.
full textEffect of cobalt on structural, microstructural and magnetic properties of magnesium-zinc ferrite nanoparticles
Mg0.5-xCoxZnFe2O4 ferrite nanostructures with various amounts of Co2+ substitution (x= 0, 0.05, 0.10, 0.15) were prepared using a simple and inexpensive sol-gel method sol-gel route. Structural, microstructural and magnetic properties of the prepared powders were investigated by x-ray diffraction (XRD), Fourier transform infrared (FT-IR), field emission- scanning electron microscopy (FE-SEM), X...
full textMy Resources
Journal title
volume 52 issue 1
pages 69- 77
publication date 2019-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023